Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.

نویسندگان

  • T G Deliagina
  • P V Zelenin
  • P Fagerstedt
  • S Grillner
  • G N Orlovsky
چکیده

The reticulospinal (RS) system is the main descending system transmitting commands from the brain to the spinal cord in the lamprey. It is responsible for initiation of locomotion, steering, and equilibrium control. In the present study, we characterize the commands that are sent by the brain to the spinal cord in intact animals via the reticulospinal pathways during locomotion. We have developed a method for recording the activity of larger RS axons in the spinal cord in freely behaving lampreys by means of chronically implanted macroelectrodes. In this paper, the mass activity in the right and left RS pathways is described and the correlations of this activity with different aspects of locomotion are discussed. In quiescent animals, the RS neurons had a low level of activity. A mild activation of RS neurons occurred in response to different sensory stimuli. Unilateral eye illumination evoked activation of the ipsilateral RS neurons. Unilateral illumination of the tail dermal photoreceptors evoked bilateral activation of RS neurons. Water vibration also evoked bilateral activation of RS neurons. Roll tilt evoked activation of the contralateral RS neurons. With longer or more intense sensory stimulation of any modality and laterality, a sharp, massive bilateral activation of the RS system occurred, and the animal started to swim. This high activity of RS neurons and swimming could last for many seconds after termination of the stimulus. There was a positive correlation between the level of activity of RS system and the intensity of locomotion. An asymmetry in the mass activity on the left and right sides occurred during lateral turns with a 30% prevalence (on average) for the ipsilateral side. Rhythmic modulation of the activity in RS pathways, related to the locomotor cycle, often was observed, with its peak coinciding with the electromyographic (EMG) burst in the ipsilateral rostral myotomes. The pattern of vestibular response of RS neurons observed in the quiescent state, that is, activation with contralateral roll tilt, was preserved during locomotion. In addition, an inhibition of their activity with ipsilateral tilt was clearly seen. In the cases when the activity of individual neurons could be traced during swimming, it was found that rhythmic modulation of their firing rate was superimposed on their tonic firing or on their vestibular responses. In conclusion, different aspects of locomotor activity-initiation and termination, vigor of locomotion, steering and equilibrium control-are well reflected in the mass activity of the larger RS neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reticulospinal neurons receive direct spinobulbar inputs during locomotor activity in lamprey.

Reticulospinal neurons of the lamprey brain stem receive rhythmic input from the spinal cord during locomotor activity. The goal of the present study was to determine whether such spinal input has a direct component to reticulospinal neurons or depends on brain stem interneurons. To answer this question, an in vitro lamprey brain stem-spinal cord preparation was used with a diffusion barrier pl...

متن کامل

Reticulospinal neurons controlling forward and backward swimming in the lamprey.

Most vertebrates are capable of two forms of locomotion, forward and backward, strongly differing in the patterns of motor coordination. Basic mechanisms generating these patterns are located in the spinal cord; they are activated and regulated by supraspinal commands. In the lamprey, these commands are transmitted by reticulospinal (RS) neurons. The aim of this study was to reveal groups of RS...

متن کامل

Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.

The neural control of movements in vertebrates is based on a set of modules, like the central pattern generator networks (CPGs) in the spinal cord coordinating locomotion. Sensory feedback is not required for the CPGs to generate the appropriate motor pattern and neither a detailed control from higher brain centers. Reticulospinal neurons in the brainstem activate the locomotor network, and the...

متن کامل

Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns.

We studied the neural correlates of turning movements during fictive locomotion in a lamprey in vitro brain-spinal cord preparation. Electrical stimulation of the skin on one side of the head was used to evoke fictive turns. Intracellular recordings were performed from reticulospinal cells in the middle (MRRN) and posterior (PRRN) rhombencephalic reticular nuclei, and from Mauthner cells, to ch...

متن کامل

The spinobulbar system in lamprey.

Locomotor networks in the spinal cord are controlled by descending systems which in turn receive feedback signals from ascending systems about the state of the locomotor networks. In lamprey, the ascending system consists of spinobulbar neurons which convey spinal network signals to the two descending systems, the reticulospinal and vestibulospinal neurons. Previous studies showed that spinobul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2000